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ABSTRACT

SPLICE is a new programming framework that allows security-
conscious applications to efficiently locate and delete a user’s in-
memory state. The core technical challenge is determining how
to delete a user’s memory values without breaking application-
specific semantic invariants involving the memory state of remain-
ing users. SPLICE solves this problem using three techniques: taint
tracking (which traces how a user’s data flows through memory),
deletion by synthesis (which overwrites each user-owned memory
value in place, replacing it with a value that preserves the sym-
bolic constraints of enclosing data structures), and a novel type
system (which forces applications to employ defensive program-
ming to avoid computing over synthesize-deleted values in unsafe
ways). Using four realistic applications that we ported to SpPLICE,
we show that SPLICE’s type system and defensive programming
requirements are not onerous for developers. We also demonstrate
that SPLICE’s run-time overheads are similar to those of prior taint
tracking systems, while enabling strong deletion semantics.
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1 INTRODUCTION

In most online applications, servers track per-user state. This state
often involves sensitive aspects of a user’s activity, and often resides
in server memory. For example, the server side of a social network-
ing application manages a user’s posts; the posts might be stored
in full on disk, with portions being fetched into RAM on demand
in response to user requests. As another example, the server side of

CCS ’23, November 26-30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3623070

This work is licensed under a Creative Commons Attribution
International 4.0 License.

James Mickens
mickens@g.harvard.edu
Harvard University
Cambridge, MA, USA

2989

Siddhartha Sen
sidsen@microsoft.com
Microsoft Research
New York, NY, USA

a VPN application might have an in-memory routing table which
maps a user’s incoming network stream to an outgoing one that
connects to a destination host. Applications also frequently use
server-side memory to store cryptographic keys (e.g., belonging to
TLS sessions).

This sensitive information is an attractive target for attack-
ers who possess memory exploits like Heartbleed [6] or Cloud-
bleed [50]. Unfortunately, such exploits remain common in mod-
ern software, as evidenced by the many CVEs that continue to
involve memory vulnerabilities (e.g., [43-46]). Memory disclosures
are particularly troubling for security-conscious applications like
VPNss [24, 49], private messaging platforms [2, 70], mix nets [19],
and analytics tools for private social graphs [69], because these
services intrinsically deal with sensitive data that users want to
hide from prying eyes.

Unfortunately, finding and deleting a user’s in-memory data is
hard [72]. Standard programming languages and run-time frame-
works do not provide ways to easily splice a particular user’s data
and its derivatives from arbitrary in-memory data structures. Simply
terminating all server-side processes (thereby deleting all of their
in-memory state) is typically unattractive for reasons of availabil-
ity, consistency, and performance. For example, client connections
might drop, and in-memory caches must be rewarmed with data
belonging to non-deleted users. Fixing this collateral damage would
require server activity that is often expensive in terms of computa-
tion, IO, and thus client-perceived response latency [39, 75]. Recov-
ery code is also complex and may trigger recovery storms [29, 30] or
additional faults [26]. Thus, intentional crashes are an unsatisfying
mechanism for surgical deletion of in-memory state.

If servers only kept encrypted in-memory data, then that data
could be effectively deleted by destroying the associated key [67].
However, even in privacy-focused applications that handle end-to-
end encrypted user data, server RAM often contains unencrypted
metadata about encrypted user state. For example, even though a
Tor router [19] never sees cleartext client traffic, the router main-
tains next-hop routing metadata for all of the network streams that
pass through it; the metadata includes sensitive information such as
the IP addresses for a stream’s endpoints. Being able to efficiently
and completely remove such cleartext metadata is important for
privacy-focused services in which a user may suffer real-world
harm if server-side evidence of the user is found.

In this paper, we introduce SPLICE, a new programming frame-
work that helps developers of security-conscious applications to
track and delete the in-memory state belonging to particular users.
SpLICE leverages three ideas: taint tracking, deletion via synthesis,
and defensive programming.
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Taint tracking: After receiving data from a user, taint tracking [22,
73] allows SPLICE to observe how that data (and its derivatives) flow
to various memory locations.

Deletion via synthesis: Later, when a user requests to be deleted
from a service, SPLICE finds each value that is tainted by the user
and deletes it. Naively deleting a value by overwriting it with a
static tombstone (e.g., null) or a random value would break data
structure invariants, rendering applications unusable. Keeping the
value in memory but marking it as poisoned (to prevent the appli-
cation from accidentally using it) would leave sensitive memory
data vulnerable to leakage via careless programming or memory
exploits such as Heartbleed. Many data structures naturally define
methods to remove items; however, executing those methods might
further propagate taint or shuffle values throughout memory, e.g.,
when nodes in a binary tree are rotated to restore balance after
a deletion. This activity may force SPLICE’s memory traversal to
restart (lest the traversal miss tainted values that reside in locations
that were previously untainted). To avoid these problems, SPLICE
overwrites a value to delete, replacing the original data with syn-
thesized data that satisfies the structural constraints of enclosing
data structures. SPLICE creates the synthesized data by invoking a
constraint solver; the constraints are derived from data-structure-
specific invariants provided by the developer of the data structure.
SPLICE pre-annotates the data structures provided by a language’s
standard library, and provides a DSL which programmers can use
to annotate custom data structures.

Defensive programming: A synthesis-deleted value preserves
data structure invariants, ensuring that, e.g., C++-style iterators
still operate as expected. However, a synthesis-deleted value is
“fake”—a program should not externalize it to clients or use it to
decide how the program manages the state of undeleted users.
To ensure these safety guarantees, SPLICE leverages the defensive
programming model that is already popular in many web applica-
tions [3, 20, 51, 58]. These applications already treat user-submitted
data as suspicious, requiring it to be sanitized before further use
by the program. SPLICE extends this idea to data structures that
are internal to the program. In particular, data structures that hold
SpLicE-deletable information must be treated as suspicious. SPLICE
enforces this policy using a type system which distinguishes be-
tween trusted and untrusted variables. Trusted variables are guar-
anteed to never hold synthesized data. An untrusted variable is
associated with a .synthesized flag that indicates whether the
variable contains synthesized data (and therefore corresponds to
a synthesis-deleted value). SPLICE’s type system ensures that (1)
only trusted values are externalized via IO mechanisms, and (2) if
the right-hand side of an assignment statement is untrusted, then
the left-hand side will be untrusted as well unless the developer
explicitly sanitizes the assignment. In this fashion, SPLICE can gen-
erate compile-time errors in statically-typed languages (or run-time
errors in dynamically-typed languages) that prevent synthesized
data from affecting trusted variables or trusted output sinks.

We have modified a Python runtime to implement SPLICE’s type
system and SpLICE’s heap traversal algorithm for locating a partic-
ular user’s data. We also built a standard library of common data
structures that are pre-annotated with synthesis constraints. We
ported four applications to run atop this SPLICE environment: a
Django-based e-commerce app, a lightweight Twitter clone, a VPN
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service, and a privacy-oriented rendezvous server for peer-to-peer
communication. Overall, we found the porting effort to be tractable.
As we demonstrate in §6, SPLICE’s computational overheads during
normal operation are similar to those of other taint tracking sys-
tems, but enable a new benefit: the ability to enumerate and remove
all of a user’s in-memory state. SPLICE’s synthesis-based deletion
relies on constraint solvers, which can be slow; however, by analyz-
ing the dependencies between the constraints of different variables
to delete, SPLICE aggressively identifies opportunities to synthesize
different variables in parallel, reducing synthesis-deletion latency
by 21%-77%.
In summary, our contributions are as follows:

e a new, synthesis-based model for deleting specific pieces of
sensitive in-memory data;

an algorithm that employs taint tracking and heap traversals to
tag in-memory data with the associated users and later find the
data associated with a particular user;

an implementation of these approaches in Python, and a set of
ported applications which demonstrate that SpLICE’s abstrac-
tions are usable and SPLICE’s performance is reasonable for ap-
plications that want to provide strong semantics for the deletion
of in-memory data. SPLICE incurs a 1.31X-2.69X increase in CPU
utilization, and a 1.26X-1.37X increase in memory utilization,
with deletion times ranging from a few milliseconds to a few
tens of seconds for the most complicated applications.
SPLICE is complementary to work that provides deletion seman-
tics for on-disk SQL data [37, 60, 64]. By combining SpPLICE with one
of those systems, developers get a full-stack solution for removing
a user from the server-side of an application.

2 THREAT MODEL

A distributed system like a web service is composed of clients and
servers. SPLICE focuses on the server-side deletion of user-derived,
in-memory data. SPLICE is only concerned with post-deletion at-
tackers who can examine server-side memory after deletion occurs;
preventing information leakage to pre-deletion attackers is out of
scope for SPLICE.

After SpLICE has deleted a user’s state from the memory of server-
side processes, remnants of that state may still persist on the user’s
client devices (e.g., in the memory of a web browser or smart phone
app). The user can remove their client-side in-memory state by
killing the relevant program (e.g., by closing a browser tab or termi-
nating an app). We assume that the user would naturally perform
such actions after submitting a SPLICE deletion request; the client-
side portion of the web service can remind users to do so after
receiving a deletion request. Deleting service-related disk state on
the client-side is out of scope for SPLICE, but SPLICE is compatible
with prior approaches for removing or hiding this state in ways
that are stronger than just deleting an app’s files [4, 14, 55]. On the
server-side, SPLICE does propagate taint to disk when in-memory
data is persisted; see Sections 3.2, 3.4.3, and 5.

Even after the user has removed their state from the server side
and their client side, remnants may still exist in the memory or
persistent storage of another client (e.g., because another user’s
web browser still holds an in-memory copy of a photo that the user
wants to delete). This information leakage is out of scope for SpLICE.
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However, from the privacy perspective, deleting the user’s state
on servers and on the user’s client devices is typically much more
important than deleting the user’s state on another user’s client
devices. Removing the user’s server-side data is urgent because, in a
centrally-managed web service, datacenter machines store all of the
user’s information and all of the context that ties the information to
other users and other aspects of the service (e.g., billing). Removing
the user’s state on their own client is urgent because, if the user is
subject to harassment from a government or another party, that
party will likely have a particular interest in examining the user’s
specific device. In contrast, the harassing party may not be able to
easily determine which devices belonging to other users contain
data associated with a specific individual.

On the server side, even if SPLICE overwrites application-visible
memory copies of sensitive data, additional copies may exist in
memory buffers that are not directly accessible to application-level
code. For example, copies of sensitive strings may exist in unflushed
libc buffers, or in outbound network packets that are queued for
transmission. Deleting sensitive information in these buffers is
out of scope for SpLICE, although SpLICE composes well with prior
solutions for scrubbing such buffers [9].

SpLICE assumes that developers are honest but imperfect. These
developers explicitly want to create applications that correctly
delete a user’s data upon request; consequently, they opt into build-
ing applications atop the SpLICE framework. However, because de-
velopers are imperfect, they might forget to use defensive program-
ming to validate memory state corresponding to possibly-deleted
information. SPLICE’s taint tracking and type system prevent devel-
opers from allowing unvalidated information to corrupt applica-
tions. Our SPLICE prototype does not propagate taint via implicit
flows [59], but is compatible with approaches that do so [35, 57].

3 DESIGN

In this section, we describe SPLICE’s design in more detail. First, we
explain the programming model that SPLICE presents to developers;
in particular, we explain SPLICE’s type system, and how it allows
developers to write defensive code that properly handles synthesize-
deleted values (§3.1). We then describe how SpLICE employs taint
tracking to assign ownership to in-memory state (§3.2). Then, we
discuss how SPLICE locates the necessary state to remove upon
receiving a deletion request from a particular user (§3.3). Finally,
we describe how SpPLICE associates symbolic constraints with data
structures, and how SPLICE uses those constraints to synthesize-
delete the memory values to remove (§3.4).

Our SpPLICE prototype is built atop the Python runtime, and
throughout this section, we often make SpLICE’s design more con-
crete by referring to how a particular SPLICE concept is implemented
for the Python runtime. However, we also describe how SpLICE’s
approach would work in a statically-typed language. Regardless
of whether a language is dynamically-typed or statically-typed,
SpLICE does require the language to be strongly-typed; strong typ-
ing ensures the correctness and safety of SPLICE’s heap traversals
and value deletion via value overwriting.

3.1 Type System

SPLICE’s type system is inspired by the notion of defensive program-
ming [3, 20, 51, 58], a safety-oriented programming style that is
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already common in web applications. Defensive programming re-
quires applications to treat all user-submitted data as suspicious
until proven otherwise. For example, when a user submits text-
based content, server-side code should sanitize that content, e.g.,
removing embedded HTML tags or SQL commands that would
allow a malicious user to inject code into the server-side execution
flow [31, 71]. Defensive programming has traditionally been applied
only to information pulled from outside a process. However, SPLICE
additionally requires developers to apply defensive programming
to certain data structures that reside within a process. In particular,
internal data structures that may hold user data must be accessed
defensively, because SPLICE may have synthesize-deleted informa-
tion within that data structure. Synthesized data should not be
externalized via IO devices, or consulted to influence decisions in-
volving the data of non-deleted users. As explained below, SPLICE’s
type system forces programs to act defensively; if programs do not,
they will encounter errors at compile-time or run-time (depending
on the language).
Primitives: A programming language defines primitive types (e.g.,
integers, floating point numbers, and individual characters) as well
as aggregation types (e.g., structs, objects, strings, and other types
that bind a collection of primitives and/or aggregation types). For
each primitive type, SPLICE differentiates between two derivative
types: a trusted variant and an untrusted variant. A variable having
the trusted variant will never contain synthesized data. A variable
having the untrusted variant may contain a synthesized value, and
therefore must be handled with caution, because the value is a fake
one that SPLICE generated to satisfy a data structure invariant (§3.4).
SpLIcE allows a program to

e read an untrusted variable’s value;

o check whether an untrusted variable actually contains synthe-

sized data; and
e use the value of an untrusted variable in the right-hand side of
an assignment to a different untrusted variable.

However, SPLICE prevents the direct assignment of an untrusted
value to a trusted variable. Instead, such an assignment must be
mediated by a sanitization operation which converts the possibly-
synthesized value to one that has a trusted type. Only trusted types
are safe to externalize outside the process via IO; trusted types are
also safe for a program to consult when making decisions that would
impact non-deleted users. SPLICE allows branching on an untrusted
value, or assigning an untrusted value to an untrusted variable,
because SPLICE’s notion of safety is defined purely with respect to
output externalization and assignments to trusted variables.

In a statically-typed language like Go, SpLICE introduces an un-
trusted variant of each built-in primitive type. For example, in Go,
SpLicE would add an untrusted int32_ut type to complement the
preexisting int32 type; SPLICE would treat int32 as the trusted
variant of the 32-bit integer type. Using this approach, attempts
to assign untrusted values to trusted variables or IO sinks are de-
tectable at compile-time, just like any other type conflict. To enable
sanitization functions (i.e., functions that derive trusted values from
untrusted inputs), SPLICE uses a language’s standard type conver-
sion operators. For example, given an untrusted Go variable u, the
codevar t int32 = int32(u) enables the bytes in u to be assigned
to a trusted variable t. Similar to how the standard version of Go
disallows implicit type conversions, SPLICE also prohibits implicit
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conversions from untrusted to trusted values. This policy forces
developers to explicitly invoke sanitization code when updating
trusted variables with state derived from untrusted values. Static
checks also prohibit untrusted data from exiting the program via
IO sinks like files, because those sinks only accept trusted values
as inputs.

In general, programs should only employ untrusted-to-trusted
casts when sanitizing untrusted values that are about to be external-
ized via IO sinks. Programs should otherwise not abuse untrusted-
to-trusted casting to shove user data into trusted variables. The rea-
son is that SPLICE’s programming model assumes that potentially-
deletable user data only exists within instances of untrusted types.

In a dynamically-typed language like Python, SpLICE also defines
untrusted analogues of the trusted built-in primitive types. Similarly,
SpLICE provides language-level mechanisms to cast an untrusted
value to a trusted one. However, the SpLIcE-modified runtime (not
the compiler) is responsible for ensuring that assignment statements
involving untrusted right-hand sides properly result in untrusted
left-hand sides.

In both statically-typed languages and dynamically-typed lan-
guages, IO sources (e.g., network sockets) that may return user data
provide an initial source of untrusted values. After fetching those
values, the application computes over them, possibly deriving new
untrusted values.

In most cases, SPLICE does not have to pay special attention to

structs and other object types which aggregate primitive values.
Reads and writes of individual fields in these objects are governed
by the same type rules that we described above. However, as we
explain soon, aggregation types (and individual primitives) that
represent OS abstractions like processes and network sockets must
be handled specially.
OS abstractions: Different languages use different interfaces to
represent OS abstractions likes processes, sockets, and disk files.
However, modern languages tend to use a specific object type to
encapsulate information about an instance of a particular OS ab-
straction. For example, in Python, a new process is launched by
creating a Popen object. That object defines fields like . args (for the
process’s command line arguments), . pid (for its process id), and
.returncode (to store the exit value generated when the process
dies). Go’s Process and ProcessState structs aggregate similar
information.

Objects corresponding to OS abstractions require special care at
deletion time. For example, consider a process P which belongs to
user Alice. When Alice requests that she be removed from a service,
P must be removed. However, simply destroying P’s address space
is insufficient, because the remnants of P in the parent process must
also be removed. So, if the application is written in Python, SpLicE
must synthesize-delete the relevant fields in the Popen object that
represents P in the parent process, overwriting .pid and . args and
so on with synthesized data.

SpLICE provides drop-in replacements for object types like Popen.
Each replacement type is associated with deletion manager code.
This code, implemented by SpLICE, performs the necessary clean-up
activity when SpPLICE determines that the associated OS abstraction
must be deleted. For example, in Python, the deletion manager
for a Popen process synthesize-deletes fields like . pid. Section 3.2
describes how SPLICE associates an instance of a system abstraction
with a particular user.
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Data structures: A data structure is just a collection of aggrega-
tion instances that are connected via references to each other. In a
statically-typed language, data structures for storing user data will
hold untrusted types; furthermore, data structure methods which re-
trieve information from those data structures will return untrusted
types. In this way, the compiler can detect when a program is not
being vigilant about handling a user-derived value that may have
been synthesized.

In a dynamically-typed language like Python, IO sources return
untrusted data, just like in a statically-type language. However,
the runtime (not the compiler) ensures that assignments involving
untrusted right-hand sides will generate untrusted left-hand sides.
Enforcement of this rule is sufficient to guarantee that, when user-
derived values enter a data structure, those values will be untrusted.
The runtime is also responsible for preventing untrusted values
from being externalized via IO sinks; for example, SPLICE’s Python
runtime throws an UntrustedExternalizationException.

In a data structure, aggregation types are connected via reference
types. For example, in a unidirectional linked list, a ListNode aggre-
gation type contains a ListNode.next reference to the following
node in the list. In SpLICE, references like . next always use trusted
types, and thus will never be synthesize-deleted. In other words,
SpLICE does not define untrusted variants of reference types. SPLICE
uses this approach because changing the shape of a data structure
at deletion time might propagate taint in undesirable ways (§1).
Keeping the shape of data structures constant at deletion time also
reduces the number of constraints that SPLICE must consider when
synthesize-deleting values.

3.2 Taint Tracking

Taint tracking allows SPLICE to observe how a user’s data propagates
throughout memory. At the conceptual level, a taint tracking system
consists of three parts: a source of initially tainted data, rules for
propagating taint to individual program variables, and higher-level
taint policies which define how tainted data is permitted to flow to
various sinks like processes and sockets.

Sources of initially tainted data: SPLICE primarily targets net-
work servers. Thus, the major sources of tainted data are network
sockets which communicate with end-user clients. SPLICE relies on
application-specific mechanisms to taint incoming socket data with
the appropriate user id. For example, in a routing indirection service
like Tor, a user id might correspond to a client IP address. In an
email application, a user id might correspond to an email address.
SpLICE provides drop-in replacements for language-level socket
read interfaces like socket.recv() in Python; these replacement
interfaces add a parameter that specifies the user id which SpLicE
should assign as the taint of the returned bytes.

Taint propagation rules: SPLICE uses dynamic taint tracking [12].
At a high level, each memory address that is visible to the program-
mer is assigned a taint tag; tags are stored in memory that is only
accessible by the runtime. As a program executes, the taint track-
ing framework interposes on assignment statements, such that the
left-hand side of an assignment receives the unions of the taints
of the values on right-hand side. For example, the assignment lhs
rhs1 + rhs2 results in lhs receiving the union of rhs1’s taint
and rhs2’s taint. Our prototype uses taint propagation rules that
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are similar to those of TaintDroid [22]. The curious reader can see
our rules in Table 1.

Higher-level taint policies: SpLICE allows tainted data to flow to
client devices since, according to our threat model (§2), SPLICE is
not opinionated about client-side information flows. SpLICE allows
tainted data to flow to server-side persistent storage; as is standard
in taint tracking systems, SPLICE assumes a file system that can
associate files with taint tags (e.g., at the granularity of whole
files [22] or byte ranges [76]). Using such a file system, SPLICE
ensures that files that are written using tainted in-memory data
receive the associated taint. SPLICE also ensures that, when those
files are read back into memory, taint propagates to memory values
as expected.

SpLICE also needs to assign taint to execution contexts like pro-
cesses and threads. SPLICE assumes that each thread is associated
with (i.e., tainted by) at most one user, although a thread may com-
pute over data belonging to multiple users, and propagate taint as
described above. SPLICE assumes that each process is also associated
with at most one user. A thread or process is associated with no
user if the thread acts on behalf of the service itself. This system
model supports application models in which a server spawns initial
processes and threads at launch time, and then creates new, per-
user threads and/or processes in response to an incoming request
for a particular user.

SPLICE requires developer assistance to identify whether a newly-
spawned execution context should be associated with a particular
user. SPLICE provides drop-in replacements for language-level inter-
faces for creating execution contexts; the SpLICE versions of those
interfaces provide additional parameters that allow developers to
specify the user id (if any) for the execution context. For example,
in our Python-based SPLICE prototype, we extend the interfaces
for creating a process, subprocess.Popen, to accept taint identi-
fiers. A deletion request sent to any process in a process tree will
induce SPLICE to delete a user’s state from all of the address spaces
belonging to the process tree.

3.3 Finding Values to Delete

As a SpLICE-enabled process executes, memory locations receive
tainted user values. When a particular user asks to be removed
from the process, SPLICE must find all of the memory values that
are tainted by the user. At a high level, SpLICE does so by traversing
memory in the same style as a garbage collector [34]. Starting from
a set of heap roots, SpLICE recursively follows memory references,
exploring the graph of memory values that are reachable from each
root. If a discovered value has the taint of the user to remove, SPLICE
must decide how to delete the value. If the value is an object that
provides a deletion manager (§3.1), SPLICE invokes the manager to
trigger type-specific deletion code. Otherwise, for primitive values
or aggregation-of-primitives objects, SPLICE consults each value’s
synthesis constraints to determine how to overwrite the value (§3.4).

Note that a memory value may be tainted by multiple users. For
example, consider the assignment lhs rhs1 + rhs2, where
rhs1 is tainted by Alice and rhs?2 is tainted by Bob. The resulting
value that is stored in 1hs will be tainted by both Alice and Bob.
Later, if Bob requests to be deleted, SPLICE’s memory traversal will
eventually find the 1hs value. SpLICE will see that the value is multi-
tainted, and will not synthesize-delete the value. Instead, SPLICE
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will simply remove Bob’s taint from the value. This policy has the
practical advantage that, when Bob is removed from the service, the
collateral damage to the rest of the application is minimized—only
state that solely belongs to Bob is removed. However, this policy
does allow some information leakage (§3.5).

Deletion by synthesis overwrites memory locations with new
values. Thus, at deletion time, SPLICE must be careful to avoid race
conditions with application threads that want to access soon-to-
be-deleted state. To avoid race conditions, SPLICE only performs
synthesis-deletion during quiescent periods when other application
threads are inactive. Our SPLICE prototype provides two concrete
definitions for quiescence, each of which is suited for a different
way of organizing computation inside a process.

o For a single-threaded, event-driven process (e.g., that employs

libevent [40] to handle asynchronous IO), SPLICE’s deletion
thread can safely run between the dispatch of event handlers.
For a multithreaded process, SPLICE adds a global reader/writer
lock. An application thread acquires the lock in reader mode in
the top-most function in its call chain; the acquisition should
occur before the thread tries to access any local variables, heap
variables, or global variables. The application thread releases the
lock when the thread’s call chain finishes, or when that chain
returns to the beginning of a loop in the top-most function.
SpLICE’s deletion thread acquires the lock in writer mode upon
receiving a user request for deletion. The deletion thread releases
the lock once the heap has been traversed and the necessary
memory values have been synthesize-deleted.
Both approaches enforce the same policy: at any given moment, ei-
ther SpLICE’s deletion thread is running, or zero or more application
threads are running. Thus, SpLICE will never synthesize-delete a
value that is actively being used by an application thread. We are in-
vestigating techniques from concurrent garbage collection [10, 56]
that may allow SpLICE’s deletion thread to safely run in parallel
with application threads.

Recall that SPLICE requires applications to be written in strongly-
typed languages. This requirement ensures that, when SPLICE per-
forms a deletion-time memory traversal, SPLICE can determine with
perfect accuracy the type of a memory value, whether the value
belongs to the user to delete, and what its associated metadata is
(in particular, the value’s synthesis constraints (§3.4) and deletion
manager (§3.1), if any).

3.4 Deletion via Synthesis

SpLICE must delete a particular user’s values in place while pre-
serving the semantic integrity of the state belonging to other users.
Doing so in a fully automated way is hard, since applications can use
arbitrary data structures to implement arbitrary application-level
semantics. Thus, SPLICE requires assistance from developers. In par-
ticular, SPLICE requires developers to annotate their data structures
with symbolic constraints. These constraints explain how each value
in the data structure! relates to other values in the data structure.
When SpLICE must delete a particular value, SPLICE concretizes the
value’s symbolic constraints, and then asks a constraint solver to
produce a new value that satisfies those constraints. SPLICE over-
writes the old value with the synthesized one, thereby deleting the
user’s old state.

Besides references—see §3.1.
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Op Type [ Op Semantics Taint Propagation Description

Unary Immutable 0,4 «selfop() T(04)— T(self) Set 04’s taint to self’s taint

Binary Immutable 04 «selfop(op) T(oa)— T(sel)UT(oB) Set 04’s taint to union of self’s taint and og’s taint

Binary Mutable self«<—selfop(0o4) T (self)e— T(self)T(04) Update self’s taint with 0 4’s taint

N-ary Immutable 04 «selfop(op, ..., oN) T(oa)— U(T(self), T(oB), - .-, T(oN)) Set 04’s taint to the union of self’s, 0g’s, ..., and oy ’s taint

N-ary Mutable self «<selfop(oa, ..., ON) T(self)— U(T(oa), - .-, T(oN)) Update self’s taint with the union of 04’s, ..., and o;’s taint

Class Immutable o0p «—Cop(opg, ..., oN) T(oa)— U(T(oB),---, T(oN)) Set 04’s taint to the union of 0g’s, ..., and o ’s taint

Iteration forog inop T(oa)— T(0B) Set 0,4’s taint to 0g’s taint

Collection Input 04 «selfop(op, ..., <ON, .- -, 0z7>) Toa)— U(Tself), T(oB), ..., T(ON), ..., Setogn’s taint to union of self’s, 0B’s, .., ON'’S, ..., and 07’s
T(oz)) taint.

Collection Return <0A,...,00 ><selfop(oN,....07) Toa)— U(T(self), T(oN), ---, T(0z)), ..., Setog’s, .., 0pr’s taint to union of self’s, ON’s, .., and 07’s
Toar)— U(T(self), T(oN), - - -, T(oz)) taint.

Table 1: SPLICE’s taint propagation rules. In the lefthand column, a “collection” can be list, tuple, or dict.

3.4.1 Overview. In SPLICE, each program variable (regardless of
whether it is trusted or untrusted) is associated with zero or more
taints; each taint represents a user whose data influenced that
variable’s value. An untrusted variable is also associated with a
symbolic constraint which explains how to overwrite that value if
the value later requires deletion-by-synthesis.

Sprice differentiates between two kinds of assignments to a
primitive: constraining assignments and maintaining assignments.
Constraining assignments add more constraints to a variable (i.e., a
memory location). Maintaining assignments do not. Constraining
assignments occur in two scenarios:

o Constraining assignment happens when a value is first initial-
ized using the default constraints for the value’s type. For exam-
ple, the local variable assignment uint32_ut lhs = 50 results
in lhs receiving the constraints gt (8) AND 1t(232 - 1), mean-
ing that the variable could be overwritten by any valid uint32
value. The variable receives the loosest possible constraints for
the uint32 type because the variable is not associated with any
data structure whose invariants depend on lhs (and thus restrict
the possible values that 1hs could be overwritten with).

As hinted above, constraining assignment occurs when a value
is inserted into a data structure such that, post-insertion, the
data structure invariants depend on the value. For example,
suppose that after the assignment uint32_ut 1lhs 50, a
program does binarySearchTree.insert(lhs, anotherLhs),
with lhs used as the insertion key, and anotherLhs being the
data which the tree associates with the insertion key. If 1hs is
passed by reference to . insert(), then the single in-memory
copy of 1hs has its constraints updated; otherwise, the new pass-
by-value copy of lhs has its constraints updated. In either case,
the new high-level constraints become “any valid uint32 value,
where that value must be greater than any value in 1hs’s left
subtree, and less than any value in rhs’s right subtree” The new
“where that . . ” text represents the constraining aspect of the
assignment. The new constraints are generated by SpLicE, who
inspects the symbolic annotations belonging to the binary search
tree and applies the appropriate new constraints to lhs. Note
that anotherLhs (i.e., the data which the tree associated with
the insertion key) does not receive a constraining assignment
when it is added to the tree node by value or by reference. The
reason is that the tree’s invariants do not depend on the value
of anotherLhs.

Assigning one struct to another using copy-by-value results in
a maintaining assignment of each right-hand struct field to the
associated field in the left-hand struct.
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(symb-const)

{ (cond-dnf) | {dnf) }-

(cond-dnf) = ‘if’ (cond) ‘then’ (dnf) { ‘elif’ (cond) ‘then’
(dnf) } [ ‘else’ (dnf) ]
(dnf) = (enf) { ‘OR" (cnf) }
(cnf) = (logic-const) { ‘AND’ (logic-const) }
(logic-const) = (‘gt’| ‘ge’ | ‘1t’ | ‘1e’ | ‘eq’ | ‘ne’) ‘C {{cond) }-
oy
(cond) = cond_op ‘( {({cond) } )’
| variable

Table 2: DSL for defining symbolic synthesis constraints.

Perhaps counterintuitively, when SPLICE encounters a primitive
assignment like uint32_ut lhs rhs1 + rhs2, SpLice does
not somehow propagate the combination of rhs1’s constraints
and rhs2’s constraints. Instead, 1hs receives the loosest possible
constraints for the uint32_ut type. The reason is that, until 1hs
becomes associated with a data structure and entangled with its
structural invariants, SPLICE can synthesize-delete it by overwrit-
ing it with any valid uint32 value; no data structure invariants
could possibly be broken by such an assignment, and defensive
programming (§3.1) will prevent the overwritten (and fake) value
from being used in a meaningful way by the program.

Given that high-level overview, we now provide specific exam-
ples of how data structures should be annotated with symbolic
information (§3.4.2 and §3.4.3). We then explain how to synthesize-
delete multiple values in parallel without breaking application in-
variants (§3.4.4).

3.4.2  Classic Data Structures. Many programming languages pro-
vide libraries that define commonly-used data structures like dic-
tionaries and search trees. These data structures typically have
simple constraints. Furthermore, the constraints can be provided
by the language designers, freeing application developers from the
responsibility of generating them.

Example 1: Binary search tree. Consider a node in a binary
search tree which stores unique keys. The constraint on the node’s
sorting value is that the value must be greater than any value in
the left subtree, and less than any value in the right subtree. SpLICE
uses a simple domain-specific language (Table 2) to express the
constraint as follows:

gt(predecessor(self)) AND It(successor(self))

where self refers to the sorting value, gt () means “greater than,”
and 1t () means “less than.” predecessor() and successor() are
predicates, written by the developer of the data structure, that
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return the values in the tree that are immediately smaller than
and greater than a given value in the tree. Predicates are defined
in the application language; for example, a Python tree expresses
predicates using Python code. At run time, when SPLICE needs to
synthesize-delete a value, SPLICE finds the associated constraints,
runs the predicates (allowing the enclosing constraints to be con-
cretized), and then passes the concretized constraints (e.g., gt (7)
AND 1t(29)) to the constraint solver. The returned value of the
constraint solver is used to overwrite the value to delete. For the
corner case in which a predicate returns nil (e.g., because the
value to delete is the largest value in the tree and thus has no
successor(self)), the predicate is dropped from the set of con-
straints that SPLICE passes to the constraint solver.

The example above used a textbook binary search tree. However,

the same constraints apply to more sophisticated kinds of sorted
binary trees like red-black trees and AVL trees. These more compli-
cated data structures have more complicated insertion and deletion
code to ensure balancing invariants. However, SpLICE deletes val-
ues by overwriting them in place, meaning that, post-deletion, the
shape of a tree is unchanged.
Example 2: Hash table. To synthesize-delete a key k in a hash
table, SPLICE must be able to find a new k’ with the same hash. Thus,
insertion into a hash table results in a constraining assignment
which adds this condition:

eq(hash(self’), hash(self)))

where hash() is the hash function used by the hash table. While
SpLICE does not categorically prevent applications from using cryp-
tographically strong hash functions, their use inside data structure
code would pose challenges to the constraint solver at deletion time,
since cryptographically strong hash functions are difficult to invert
by design. Therefore, a SPLICE-amenable hash table must use a hash
function that is tractable for the constraint solver to invert [65].

3.4.3 More Complex Data Structures.

Example 3: Redis sorted set. Redis [5] is a popular in-memory
data store that provides a variety of classic data structures like
lists and hash tables. Redis also provides more advanced structures
like sorted sets. A sorted set contains two-tuples, where the first
tuple element is a floating point number called the “score,” and the
second element is a string. Each tuple resides in a sorted list (used
for iterating through the tuples in order of their scores) and a hash
table (used to efficiently find the score for a particular key).

With SpLICE, insertion into a sorted set creates a new tuple, and
generates three constraining assignments. The first constraining
assignment involves the string that is used as a hash table key;
the assignment is equivalent to the one shown in Example 2. The
second and third constraining assignments involve the sorted list.
The second restricts the possible values for the new tuple’s score:

if gt(prev(self), self) then gt(prev(self))

else ge(prev(self)) AND
if [t(next(self),self) then lt(next(self))

else le(next(self))
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The third constraining assignment restricts the possible values for
the new tuple’s string:

if eq(prev(self), self) then gt(prev(self)) AND
if eq(next(self), self) then It(next(self))

The overall result is that the string receives two constraining as-
signments, and the score receives one. Note the use of the if-else
construct, which allows SpLICE to choose at deletion time which
constraints to pass to the constraint solver.

Example 4: Log-structured merge tree. Log-structured merge
(LSM) trees [38] are used by persistent key/value stores like Lev-
elDB [16] and RocksDB [63]. In this section, we describe the sym-
bolic annotations for a LevelDB-style LSM tree.

Such a tree consists of an in-memory structure called a memtable,
and a disk-based structure made of several levels of sstables (“sorted
string tables”).

o The memtable is a skiplist. The LSM tree uses it as a write log to
hold recently updated key/value pairs. The skiplist also memo-
rializes the removals of key/value pairs, logging each removal
using a special tombstone tuple for the associated key.

The sorted tables store colder key/value pairs. When the skiplist
reaches a cutoff size (e.g., 4 MB in LevelDB), the skiplist is con-
verted into an sstable. An sstable holds entries sorted by their
keys, where each entry corresponds to a key/value pair or a key
tombstone. Level 0 consists of the most recently generated ssta-
bles; these tables may have overlapping key ranges. However,
there are no overlaps at higher levels. For example, at Level 1,
each sstable covers a unique key range. Periodically, a Level i
table is removed from Level i and merged with Level i + 1 by
removing the overlapping Level i + 1 tables, and creating new
Level i + 1 tables containing no duplicate keys. Thus, recent
updates are gradually pushed down the levels, allowing old (i.e.,
merged) sstables to be garbage collected.

A read for key k is handled by scanning the memtable, then the
Level 0 sstables, then the relevant Level i sstable, and so on until a
match is found or no more sstables remain to be scanned.

Logically speaking, SPLICE treats the on-disk component of the
LSM tree in the same way that it treats the in-memory part. When
memtables are converted to sstables and spilled to disk, SPLICE seri-
alizes the associated SPLICE types, propagating taint and symbolic
constraints. When sstables are pulled into memory during merging
or to satisfy a read query, SPLICE deserializes the associated SPLICE
types to ensure that taint propagates as expected and symbolic
constraints are updated as needed.

The constraints for the memtable skiplist are straightforward:

gt(prev(self)) AND It(next(self))

The constraints for the sstables are more complicated, because keys
in sstable entries are delta-encoded to save space. An sstable stores
a full (i.e., non-delta-encoded) key at predetermined intervals; in
between, each key k; is represented as the length of the prefix
shared with the previous k;_1, and the suffix string that is unique
to k;. For example, suppose that Alice inserts the key “try”, Bob
inserts the key “trying”, and then the memtable is immediately
flushed to an sstable. The first sstable entry will contain the full
key “try”, and the second entry will contain the delta-encoded
key <3, “ing”>. As expected, the full key “try” will be tainted
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by Alice, and the delta-encoded key <3, “ing”> will be tainted by
Bob. SpLICE assigns the following symbolic constraints to a key:

gt(prev_decoded_key(self)) AND

It(next_decoded_key(self)) AND

eq(prefix(get_prefix_len(next(self)), self),
prefix(get_prefix_len(next(self)), self’)))

The first two constraints ensure that the synthesized key k’ main-
tains the total order of decoded keys in the sorted table. The third
constraint ensures that k’ preserves enough of the initial characters
in k to not break the delta-encoding of the key following k.

Suppose that later, Alice issues a LevelDB operation to remove
the key “try”, causing a tombstone record to be placed in the
memtable. During the subsequent merging of the memtable with
sstables, LevelDB will realize that the key “try” has been removed,
but is a prefix for the surviving key “trying”. LevelDB will thus
create a new, non-delta-encoded sstable entry for “trying”, with
the first three characters tainted by Alice, and the trailing three
characters tainted by Bob. From the perspective of SPLICE’s memory
traversal (§3.3), a string possesses the union of the taints of its
characters. If Alice requests a SpLICE-level deletion, SpLICE will
find the multi-tainted string and remove Alice’s taint from the
relevant characters; however, SpLICE will not synthesize-delete the
key. The synthesize-deletion is only triggered once Bob requests a
SpricE-level deletion.

3.4.4 Synthesizing in Parallel. Constraint solvers can be slow. To
hide some of this cost at deletion time, SPLICE aggressively syn-
thesizes multiple values in parallel. Define the dependence set of a
value-to-delete v, as the transitive closure of the values mentioned
by vx’s constraints, or recursively mentioned by the constraints
of those values. SPLICE can synthesize-delete vy before, after, or in
parallel with vy if vy is not in vx’s dependence set. However, if
vy is in vy’s dependence set, then v must be synthesize-deleted
before vy. SPLICE can synthesize vy and vy in parallel if neither
resides in the dependence set of the other.

At deletion time, SPLICE traverses memory to find the necessary
values to delete (§3.3). After finding all of those values, SpLICE builds
dependency graphs for the values to delete, where the directed
edge vy — Vi means that vy must be synthesized before vy. After
walking through memory, SPLICE has produced a collection of one
or more graphs, where individual graphs are disconnected from
each other. For two values residing in different graphs, SPLICE can
synthesize-delete the values in parallel. Within the same graph,
SpriceE must handle ancestors before handling descendants, but
there may still be opportunities for parallelism. For example, if
a graph is a tree, SPLICE could proceed level by level, synthesize-
deleting in parallel all N nodes of a level (or C nodes if SpLiCE
only has access to C < N CPUs). More generally, for a graph
with multiple roots (i.e., multiple nodes with no incoming edges),
SPLICE starts its parallel traversal from those roots, similar to how
a topological sort would work [36].

In theory, a dependency graph can have cycles of arbitrary length.
In practice, for the data structures that we examined, cycles were
rare. The cycles that we did observe were always of length two,
and the constraints associated with the two edges were mirrored
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versions of each other. For example, a binary search tree might
have a dependency cycle of length two involving a parent and a
left child of that parent. The parent-to-left-child dependency would
be vy, > v, and the left-child-to-parent dependency would be v,
< Vp. For length-two chains of mirrored dependencies, SPLICE can
break the chain arbitrarily (e.g., by removing the parent-to-left-
child dependency) and synthesize using the resulting dependency
graph without fear of breaking correctness.

3.5 Discussion

A single memory value can be multi-tainted, having the taints of
(say) both Alice and Bob (§3.2). If Bob asks to be removed from the
service, and SPLICE finds such a multi-tainted value, SpLiCE will just
remove Bob’s taint, without synthesize-deleting the value. Doing so
minimizes the collateral damage of deletion, but leaves more traces
of Bob’s former presence in memory. SPLICE could inform Bob of
such undeleted data at deletion time. In theory, SPLICE could instead
try to speculate about what the multi-tainted value would have been
had Bob’s inputs never been processed by the system; SpLicE would
then overwrite the value with the result of the speculation. However,
devising a rigorous way to imagine such counterfactual worlds is
hard, so we leave a more thorough investigation of this idea to
future work.

When a value must be synthesize-deleted, the value’s constraints
may be such that the value can only be overwritten by its current
value. For example, suppose that a binary search tree of integers
does not allow duplicates, and contains the values 6, 7, and 8. In
this example, the value 7 can only be overwritten with 7, meaning
that synthesis-deletion would not actually delete information. As in
the multi-taint example from the previous paragraph, SpLICE could
warn a user that some data was unable to be deleted because of
overly-restrictive constraints.

The fact that SpLICE deletion does not change the shape of a
data structure may leak information about the possible values that
could have existed pre-deletion [47]. Accurately quantifying such
leakages is difficult. One strategy might be to use entropy met-
rics to capture SPLICE’s ability to synthesize-delete values that are
“very different” from the original ones. We leave this information
theoretic analysis to future work.

4 IMPLEMENTATION

Our SpPLICE prototype extends the Python runtime, providing four
new components: a type system, a synthesis module, a deletion
module, and a standard library. Our type system, containing roughly
1,650 lines of code, uses Python metaprogramming to introduce
drop-in replacements for built-in primitive types and strings. Each
instance contains hidden . synthesized and . taint flags, and uses
reflection to interpose on assignments and update flags as appro-
priate. Our new type system also contains drop-in replacements
for objects corresponding to OS abstractions (§3.1).

Our deletion module runs when a user asks to be removed from
a service. This module, containing roughly 200 lines of code, uses
the guppy3 memory analysis tool [48] to traverse the application
heap and locate the objects to delete; our prototype currently uses
a single thread to walk the heap. The deletion module invokes our
synthesis module to generate the values needed to overwrite a user’s
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state. The synthesis module contains roughly 1,400 lines of code;
it runs SPLICE’s dependency analysis (§3.4.4) and invokes the Z3
constraint solver [15] to generate new values, synthesizing multiple
ones in parallel when dependencies allow.

Our final component is a standard library of common data struc-
tures, pre-annotated with symbolic constraints. The library contains
all of the data structures mentioned in §3.4, and several others like a
clone of the Redis key/value store [5]. The library contains roughly
3,900 lines of code.

5 PORTED APPLICATIONS

We ported four different Python applications to SpLICE: a Django-
based ecommerce site, a lightweight Twitter clone, a VPN server,
and a signaling server for end-to-end encrypted chats. Overall,
we found that the porting effort was quite tractable. For example,
we were able to port the SaltyRPC codebase, with which we had
no previous familiarity, in less than two person-hours; we added
roughly 500 lines of code to introduce taint sources and sinks, and
modified the application to use SPLICE-provided object types for
OS abstractions like sockets.

Django: Django [25] is a popular server-side web framework. When
a client-generated HT TP request arrives, the request traverses sev-
eral layers of middleware before reaching the core application logic.
The most relevant layers are the session middleware, which is early
in the request ingress path, and the authentication middleware,
which is later. The session middleware inspects a request’s cookies,
generating a new client session if necessary. However, a request is
not associated with a user until the request hits the authentication
layer; to identify the correct user, this layer consults the request’s
cookies (to map an already-logged-in user to the request) or the
database (to initially log in a user). Each middleware layer is state-
less, retaining no in-memory data about a request after the request
has been handed to the next layer. After traversing the middleware
stack, the request hits the core application logic. That logic uses a
SQL database as a backend, with each table having an associated
Python-level class. When Django reads a table row into memory,
Django represents it using an instance of the associated Python
class; similarly, Django updates a table by serializing the appro-
priate Python-level objects and writing them to disk. Django has
a pluggable in-memory caching layer, with developers choosing
from several implementations like memcached or Redis. Once the
application logic has fetched data from the cache or the backend,
the logic assembles the HTML response using a templating engine.
The response then goes up another set of stateless middleware
components before returning to the client.

In the SpLICE version of Django, sockets generate untrusted,
tainted data, with the taint being assigned by new code residing
in the authentication middleware. Since all prior middleware in
the ingress stack is stateless, not tainting a request earlier does not
result in a loss of visibility into user-specific data. To propagate
taint into the persistent storage layer, SPLICE transparently rewrites
database schemas, adding additional columns to indicate whether a
database value is synthesized; SPLICE considers all database values
to be untrusted, so SPLICE does not add extra columns to indicate
this. SpLICE rewrites the Python-level classes that reflect database
rows, and also rewrites the database queries issued by Django to
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make them aware of the new schema. The rewritten queries use
the data lineage approach of Cui et al. [13] to ensure that taint
propagates correctly through SQL statements. When a Sprice-level
deletion of a database value is necessary, SPLICE nulls the associated
value, unless the value is a primary key or used by a database index,
in which case SpLICE deletes the whole row. Row deletion may
trigger additional row deletions due to FOREIGN KEY+CASCADE rela-
tionships. We wrote a Python-based Redis clone to act as Django’s
in-memory caching layer.

In the request ingress stack, we added new middleware to handle
SpLICE deletion requests. Django is multithreaded, so our deletion
middleware uses the reader/writer approach from §3.3. In the re-
sponse egress stack, we added new middleware which ensures that
untrusted data is not externalized to clients.

MiniTwit: MiniTwit [53] is a Twitter clone that runs atop the Flask
web framework [52]. MiniTwit supports key Twitter functionality
like posting messages and following users. The original MiniTwit
code employed a SQLite database to store profile information for
registered users (e.g., email addresses and passwords). In our SPLICE
port, we swapped out SQLite for our own Python implementation
of LevelDB (§3.4.3) to demonstrate SPLICE’s ability to taint and
delete on-disk values that are not managed by a relational database.
We also reused our Django ORM framework to allow MiniTwit to
interact with the PostgreSQL database which stores tweets. Flask
uses a multithreaded, middleware-based design that is conceptually
similar to that of Django; so, we could apply our porting strategy
for Django to Flask in a straightforward way.

SSTP: SSTP (Secure Socket Tunneling Protocol) is a VPN protocol
for encapsulating Layer 2 traffic within a TLS connection [41]. We
ported an open-source SSTP server [7] to SpLice. Unlike Django
and MiniTwit, where a taint tag corresponds to an application-
level username, the SSTP server associates each taint tag with
a client IP address. After a client establishes a connection with
the SSTP server’s parent process, the server forks a child process
which immediately exec()s an instance of pppd [1]. An SSTP client
forwards an outbound Layer 2 packet via the TLS tunnel to the
appropriate pppd child process; in turn, the child forwards the
packet to the parent process via a pipe, and the parent sends the
rewritten packet to the destination server. Packets received from
the remote endpoint follow the reverse path.

SaltyRTC: SaltyRTC is a protocol for establishing peer-to-peer, end-
to-end encrypted communication [28]. We ported the SaltyRTC
signaling server, which acts as a rendezvous point for initiators
(who define “connection paths” at the server) and responders (who
connect to paths to exchange information with the associated initia-
tors). A path is just a hex representation of the initiator’s public key.
Once two peers have authenticated to the server and linked them-
selves to the same path, the peers exchange messages directly (i.e.,
without forwarding assistance from the server). The server tracks
connection state via an in-memory dictionary which uses initiator
public keys as lookup keys; each lookup key is associated with con-
nection metadata for one or more responders who are talking to the
initiator. Similar to SSTP, SpLICE’s port of the SaltyRTC server taints
incoming network bytes with the taint of the sender’s IP address.
Both SSTP and SaltyRTC are examples of network management
applications for which users may need to quickly delete server-side
in-memory state for personal safety reasons (e.g., because VPN or
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Figure 2: LFS parallel deletion performance.

peer-to-peer network services are illegal in a user’s country and a
user expects impending scrutiny from law enforcement agencies).

6 EVALUATION

In §5, we demonstrated that porting applications to SPLICE is straight-
forward. In this section, we examine the performance of SPLICE on
the ported applications from §5. We study application performance
during normal program operation and during user deletion. In all
experiments, servers and clients ran on the same 4.6GHz 8-core
laptop with 16GB of RAM. We pinned clients and servers to differ-
ent cores; in some experiments, we injected emulated latency using
netem. All localhost clients and servers allowed us to effectively
set client/server network latency to zero if desired, enabling us to
isolate SPLICE’s CPU overheads during normal operation. In each
deletion experiment, we scanned memory post-deletion to verify
that SpLICE had correctly excised all of the relevant tainted data.
At a high level, our evaluation shows that SPLICE provides strong
deletion semantics at the cost of a 1.31X-2.69% increase in CPU uti-
lization, and a 1.26X-1.37X increase in memory utilization. Deleting
a user’s in-memory state on a SPLICE-aware server takes less than
a second for SaltyRPC and SSTP, but up to roughly 70 seconds for
our most complex application, a Django-based e-commerce site. We
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believe that these overheads are reasonable for security-conscious
applications; furthermore, these overheads would decrease if our
prototype incorporated optimizations to eliminate or parallelize
taint tracking instrumentation at run time [33, 42, 68], and paral-
lelize heap walking [66] at deletion time.

6.1 LFS

We evaluated our modified Django framework using LFS (Lightning
Fast Shop) [18], an e-commerce website that runs atop Django. LFS
is an industrial-strength online shopping application that allows
customers to browse products, review products, upload payment
information, place orders, and so on. We configured Django to use
our Redis-style in-memory cache (§5) and a standard PostgreSQL
backend.

We evaluated LFS using a workload that mimicked a user who
browses multiple items, adds a subset to their cart, and then checks
out. In this workload, 90% of the requests are browse requests, 8%
are add-to-cart requests, and 2% are checkout requests. We ran
a single Django process that was pinned to a single core, and varied
the number of clients (each pinned to a single core).

The LFS server used a roughly constant amount of memory,
regardless of the number of clients; compared to a baseline (i.e.,
non-SPLICE) version of LFS, SPLICE increased memory usage by
roughly 37%. Memory consumption was insensitive to client load
because the most common in-memory objects belonged to Django’s
cache, and the application maintains a cap on the cache’s size.

As shown in Fig. 1(a), SPLICE also generated extra computational
overhead due to taint tracking and the maintenance of the type
system. However, for an unrealistically fast 0 ms RTT network,
the baseline and Sprice-enabled LFS both hit CPU saturation at six
concurrent clients, causing flatlines in LFS throughput (Fig. 1(c)) and
steeper client-perceived increases in LFS response latency (Fig. 1(b)).
For a more realistic 100 ms RTT, CPU utilization did not hit 100%
for the baseline system or the SpLicE-enabled one. However, SPLICE
did introduce 31%-59% overhead in CPU utilization. This overhead
is comparable to that of other systems that do taint tracking [22]
without eliding or parallelizing taint instrumentation [33, 42, 68].

To evaluate SpPLICE’s deletion speed, we warmed LFS’s in-memory
cache with product reviews taken from a real Amazon dataset [32].
We varied the number of users submitting a review from 1 to 16,
with each user generating 200 reviews. We then generated a deletion
request for a single user.
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Fig. 2 shows the deletion time as a function of the number of
users. We decompose this cost into the time needed to walk the heap,
and the time needed to synthesize-delete values. Unsurprisingly,
the heap walk time grew linearly with the number of users, because
more users result in a larger aggregate number of reviews (and thus
more in-memory Python objects). For example, with 16 clients, the
heap contained over 4.3 million objects, as shown by the numerical
annotation next to the data point in Fig. 2. Our prototype’s heap
walking implementation is single-threaded, but is amenable to prior
techniques that leverage multiple cores to scan the heap [66].

Our prototype does use our novel parallelization scheme for syn-
thesis deletion (§3.4.4). Fig. 2 demonstrates that, for a larger number
of users, SPLICE’s ability to synthesize in parallel was improved.
The reason is that, for a given user to delete (and a given number
of in-memory objects belonging to that user), a particular memory
value to delete becomes less likely to have a dependence set con-
taining another value from the user to delete (§3.4.4). Introducing
just one additional user unlocked many more opportunities for
parallel synthesis, as shown by the dashed line, which indicates
the average number of tainted objects that can be synthesized in
parallel during every round of graph traversal. Even though the
opportunity for parallelism increases, the observed synthesis speed
flatlined after 4 clients. This is an artifact of our experimental set-
ting, where we have only a limited number of cores to perform the
parallel synthesis.

6.2 MiniTwit

We evaluated MiniTwit on a typical workload containing 95% view
requests (where a user browses the public timeline of another user),
and 5% tweet requests (where a user posts a message on their
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SpLICE introduced 54%-169% overhead in CPU utilization as the
number of clients increased, causing SPLICE latency and through-
put to suffer at 32 clients. These CPU overheads were greater than
the ones seen in LFS (§6.1). The reason is that, compared to LFS,
MiniTwit performed a large number of string manipulations, re-
sulting in higher object counts and higher overhead induced by
SPLICE’s taint tracking and type maintenance. The string manip-
ulations were generated by MiniTwit’s templating engine, which
inserted database results into template strings to create timeline
views that were returned to users.

To avoid this overhead, a straightforward (albeit application-
specific) optimization is for SpLICE to disable taint tracking within
the template engine code; SPLICE would just taint an engine’s output
string with the union of the taints of the input strings from the
database. Fig. 3 shows that this approach dramatically reduced
CPU utilization to only 1% - 50%, resulting in SpLICE latency and
throughput being comparable to those of the baseline.

To delete a MiniTwit user, we must delete their tweets in Post-
greSQL, and their registration information in LevelDB. We focus
on the latter, since PostgreSQL’s right-to-be-deleted performance
is well-understood [62]. As discussed in §3.4.3, LevelDB has both
in-memory data and on-disk data. SPLICE must inspect both com-
ponents to ensure complete deletion.

The in-memory deletion performance followed the same trend
as in LFS (Fig. 2): the larger the heap size, the longer it took to walk
the heap, while synthesis time was negligible since the amount of
registration data for a user was small. For the disk-based structure,
deletion overhead grew almost linearly in the number of users:
e.g., for 5,000, 10,000, and 100, 000 users, the deletion time was
8.5s, 15.7s, and 175.2s. The biggest source of overhead was data
deserialization, which occurred when loading the on-disk sstables
into memory. Each fully-populated table is ~6.7 MB, takes about
2s to be unmarshalled, and creates approximately 896,000 new
heap objects. Once loaded, SPLICE must perform an additional heap
walk—for the part of the heap created by the sstable, not the entire
heap—to inspect the data.



CCS *23, November 26-30, 2023, Copenhagen, Denmark

Xueyuan Han, James Mickens, and Siddhartha Sen

1750

1500

1250

1000

750

500

Latency (milliseconds)

CPU Utilization

—»— Splice (100 RTT)
—— Baseline (100 RTT)

250

N w > o
=3 =3 =3 =3
=3 =3 =3 =3

# of Connected Peers/second
S
o

o

128 256 512 18632 64 128

# of Concurrent Workers

18632 64

()

# of Concurrent Workers

(b)

128 256

# of Concurrent Workers

256 1m632 64

(©

Figure 5: SaltyRTC performance: (a) CPU utilization, (b) average latency per peer-to-peer connection, and (c) throughput.

6.3 SSTP VPN

To evaluate the SSTP server, we created a scenario in which one
or more web browser clients loaded stackoverflow.com. We used
Puppeteer instances [17] to generate realistic HTTP traffic, giving
each instance two cores. The CPU utilization of the SSTP server
remained low throughout the experiment, reaching a maximum of
33% with 6 clients. As shown in Fig. 4, there were minimal client-
perceived increases in page load time.

The SSTP server maintained several kinds of OS abstraction
objects (§3.1) for each connected client (e.g., a dedicated socket, a
pppd child process, and pipes). All of these resources were tainted
by the client’s IP address, and deleted by the deletion manager.
Deletion was fast: regardless of the number of connected clients
(we evaluated up to 32 clients), it took less than 5 ms to finish.

6.4 SaltyRTC

SaltyRTC clients only use a SaltyRTC server as a rendezvous point
for peer-to-peer conversation; after completing the rendezvous
protocol, clients exchange traffic directly. However, the rendezvous
handshake does require multiple rounds of communication between
the server and the peers that wish to talk to each other. We wrote a
traffic generator that provided a configurable steady-state load of
N rendezvous attempts. We then scaled N to view SPLICE’s impact
on the server’s performance.

As shown in Fig. 5(a), SPLICE introduced 36%—-66% overhead
in CPU utilization, essentially saturating the server’s CPU at a
load of 256 concurrent rendezvous attempts. Before that point,
SpLIcE’s handshaking latency was within 13.4% of the baseline
latency (Fig. 5(b)), and server-perceived handshake throughput was
within 9.6% of the baseline (Fig. 5(c)). SPLICE’s impact on memory
consumption was modest, requiring at worst 18% more memory
when handling 512 clients.

The stock SaltyRTC server implements a native deletion function
that removes a client’s in-memory dictionary state when the client
disconnects. However, that function does not remove all references
to the now-disconnected client. For example, the client’s public key,
used as the rendezvous path, remains in several memory locations
associated with peers who once communicated with the client. This
state of affairs is allowable by the SaltyRTC protocol (which says
that a responder may remain on an existing path and wait for a
new initiator to connect). However, this behavior is bad from the
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privacy perspective. The SpLiCE-enabled server efficiently deleted
all in-memory traces of a disconnected client, requiring less than a
second even with 512 concurrent handshakes in flight.

7 RELATED WORK

Taint tracking: Taint tracking is a well-known approach for cap-
turing information flows. The basic idea can be applied at various
levels of abstraction. SPLICE implements it at the managed-language
level, similar to TaintDroid [22] and Riverbed [72]. Other systems
track data flows at the native code level 8, 23, 59] or at the granular-
ity of OS abstractions like processes and file descriptors [21, 54, 74].
Capturing data flows at the level of POSIX abstractions is too coarse-
grained to identify a user’s in-memory state with sufficient accuracy.
Taint tracking at the native code level sees raw memory writes,
and thus could identify per-user data flows to specific memory
addresses; however, we eschewed this approach due to the over-
tainting that may arise during pointer operations on raw mem-
ory [23, 59].

Deleting storage data: SpLICE focuses on the removal of server-
side in-memory data. Other work has investigated how to add
GDPR compliance (including the right to be deleted) to SQL stor-
age [37, 60, 64]. This work often employs aggressive per-user par-
titioning of data to ease the finding and deletion of a particular
user’s state. For example, in SchengenDB [37], the database tags
each data point with the owning user, and ensures that each data
point is stored in exactly one place (i.e., exactly one row). By disal-
lowing duplicates or derivatives of that data, SchengenDB makes
enumerating and deleting a user’s data straightforward, but lim-
its schema expressivity, and forfeits the performance gains that
arise from storing duplicate or derived data. SPLICE strives to work
with arbitrary data structures, and thus cannot prohibit duplication
or derivation. However, SPLICE does require data structures to be
annotated with symbolic constraints.

Facebook uses the Delf framework [11] to orchestrate deletion
across the multiple SQL databases, key/value stores, and graph
stores that comprise Facebook’s backend. When developers intro-
duce a new data type, Delf requires developers to provide object
annotations (which inform Delf when to delete objects, e.g., after a
TTL expiration) and edge annotations (which determine how Delf
handles objects that are reachable from a now-deleted object). This
approach makes sense for the more structured world of backend
storage, but less sense for in-memory data structures which do not



SeLice: Efficiently Removing a User’s Data from In-memory Application State

use standardized, formal notions like primary keys and foreign keys
to connect various objects to each other. Web developers are already
familiar with defensive programming (§1), so SpLICE leverages this
familiarity to make it easier to reason about deletion semantics.
SpLICE also reduces annotation burdens by pre-annotating data
structures in a language’s standard library. Another key difference
between Delf and SpLICE is that Delf handles a deletion request asyn-
chronously. In contrast, an important goal of SPLICE is to handle a
request as soon as a quiescent period arrives, which will typically
be within hundreds of milliseconds of the request arrival.

In the context of the GDPR’s right to deletion, Shah et al. looked
at Redis, a popular key-value store often used by web services [61].
Redis provides built-in support for synchronous key deletion, as
well as lazy deletion in which Redis deletes a key at some point
after the key’s expiration period has elapsed. Shah et al. found that
Redis’s lazy deletion is quite lazy, sometimes requiring hours to
delete an expired key. Both lazy and synchronous deletion also left
remnants of a key/value pair in Redis’s on-disk operation log. The
SpLICE version of the LevelDB key/value store logically treats the
store’s on-disk data structures as extensions of the in-memory data
structures (§3.4.3); thus, at deletion time, SpLICE walks heap data
that resides in both memory and persistent storage, synthesize-
deleting the necessary values.
Encryption-based deletion: Vanish [27] and CleanOS [67] keep
sensitive data encrypted at rest. “Deletion” occurs via the discarding
of the associated encryption keys (which renders the encrypted
data useless). As mentioned in §1, even systems that use at-rest
data encryption often store cleartext in-memory data that is influ-
enced by user activity. SPLICE provides a way to find and delete
such values.

8 CONCLUSION

SPLICE is a framework that helps applications to locate and delete
the in-memory state belonging to a particular user. SPLICE achieves
this goal through a novel combination of taint tracking, a defensive
programming model enabled by a new type system, and deletion
by synthesis. We ported real applications to SpLICE, and showed
that the porting burdens are low, and that SpLICE’s performance
overheads are reasonable for security-conscious applications.
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