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Abstract—Historically, attackers have sought to manipulate
programs through the corruption of return addresses, function
pointers, and other control flow data. However, as protections
like ASLR, stack canaries, and no-execute bits have made
such attacks more difficult, data-oriented exploits have received
increasing attention. Such exploits try to subvert a program by
reading or writing non-control data, without introducing any
foreign code or violating the program’s legitimate control flow
graph. Recently, a data-oriented exploitation technique called
memory cartography was introduced, in which an attacker
navigates between allocated memory regions using a precompiled
map to disclose sensitive program data. The efficacy of memory
cartography is dependent on inter-region pointers being located
at constant offsets within memory regions; thus, cartographic
attacks are difficult to launch against memory regions like heaps
and stacks that have nondeterministic layouts. In this paper, we
lower the barrier to successful attacks against nondeterministic
memory, demonstrating that pointers between regions of memory
often possess unique “signatures” that allow attackers to identify
them with high accuracy. These signatures are accurate even
when the pointers reside in non-deterministic memory areas. In
many real-world programs, this allows an attacker that is capable
of reading bytes from a single heap to access all of process
memory. Our findings underscore the importance of memory
isolation via separate address spaces.

I. INTRODUCTION

Memory bugs are common attack vectors. Over 70% of the
CVEs patched by Microsoft each year are related to memory
safety [1], and memory vulnerabilities like HeartBleed have
caused international panic [2]. Such vulnerabilities often serve
as starting points for attacks that subvert a program’s control
flow. For example, in a return-oriented programming attack, a
malicious actor repeatedly overwrites return addresses to chain
together short sequences of instructions and perform arbitrary
computations [3]. Despite the continued prevalence of memory
vulnerabilities [1], exploiting them to hijack program control
flow has become significantly more difficult. Protections like
Address Space Layout Randomization (ASLR) and Data Ex-
ecution Prevention (DEP) significantly hinder an attacker’s
ability to inject arbitrary code or locate executable gadgets;
defenses like stack canaries and shadow stacks can detect
violations of control flow integrity [4].

The increased difficulty of subverting a program’s control
flow has spawned increased interest in data-oriented attacks
[5]. Data-oriented exploits refrain from modifying control data
like return addresses and function pointers, thereby respecting
the program’s control flow graph. Instead, these attacks ma-
nipulate non-control data, like program variables and function
arguments, to indirectly influence program execution.

The most basic data-oriented attacks directly manipulate
variables that help decide program behavior. For example,
Chen et al. [6] demonstrated an attack against SSH in which
a memory vulnerability was used to overwrite a boolean
flag containing the user’s authentication status. This caused
the server to treat the user as if the user had successfully
authenticated, despite the user never having presenting valid
credentials. More sophisticated attacks chain together gadgets
inside of a program’s legitimate control flow graph to perform
complex manipulations of data [7]. Each gadget is a short
sequence of basic blocks that performs a simple computation.
These gadgets are invoked in sequence via the repeated manip-
ulation of non-control data (often within a loop). This allows
the attacker to perform highly flexible computations without
violating the program’s control flow integrity. Such multi-
stage attacks are collectively referred to as “data-oriented
programming” (DOP).

Data-oriented attacks have historically required extensive
knowledge of the victim program and manual inspection
of victim code [6]. Researchers have tried to automate the
identification of gadget chains that facilitate DOP attacks, but
initial efforts have been highly dependent on the exact nature
of the memory vulnerability being exploited [8] [9]. Rogowski
et al. [5] introduced memory cartography, a data-oriented
attack that is largely agnostic to the specific vulnerability
being exploited; the technique also requires minimal semantic
knowledge of the victim program.

In a memory cartography attack, an attacker runs the victim
program offline, examining the allocated memory regions
using a tool like GDB. We use the term “memory region” to
refer to a virtually contiguous set of pages within the victim
process. For example, in Linux, such a region is called a virtual
memory area (VMA). VMAs include code and data segments
from the victim binary, as well as memory regions that are
dynamically created through calls to sbrk and mmap. In
Linux, the virtual memory ranges corresponding to each VMA
can be obtained from the pseudo-file /proc/<pid>/maps.

After determining the bounds of each VMA, the attacker
scans each region, checking whether each aligned, pointer-
size value references a valid, external memory region. Such
pointers link a specific offset in a source memory region to
another offset in a destination region. In aggregate, these edges
form a network that connects all regions of program memory.
Because the attacker lacks source code or debugging symbols,
the attacker cannot determine which edges are “false” edges,
i.e., pointer-sized regions of memory that are not pointers, but
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whose binary values (when interpreted as pointers) reference
valid memory regions. To eliminate such false edges, the
attacker merely needs to load the program multiple times,
building a new map for each load. Since (1) ASLR preserves
the relative offsets of each true pointer within a memory
region, and (2) a false pointer is unlikely to point to a valid
memory region across multiple ASLR loads of a program, the
attacker can eliminate false pointers after a handful of program
loads. The result is a reliable map of links between memory
regions. Armed with this map, a memory read vulnerability
can be used to navigate from a source memory region to the
rest of program memory without triggering a segmentation
fault, even in the face of ASLR. This ability gives the attacker
freedom to search for sensitive data anywhere in the address
space.

The efficacy of memory cartography is dependent on inter-
region pointers being located at consistent offsets within their
host memory regions. While this is a valid assumption for
memory regions containing static data, the offsets of program
variables can be highly nondeterministic in regions like heaps
and stacks. For this reason, Rogowski et al. primarily built
their memory map using links between data sections, and only
recorded incoming edges for heap regions. To use such a map,
an attacker traverses multiple data sections before arriving
at a pointer to a heap containing sensitive data. While this
pointer may lead to an inconsistent offset within the heap, the
attacker can simply search the surrounding region of memory
for sensitive information.

The inability of memory cartography to build edges leaving
a heap region can be a significant limitation. If an attacker can-
not traverse heap regions to reach memory destinations, this
may reduce the connectivity of the memory map. Perhaps more
importantly, memory read vulnerabilities often originate from
objects on the heap; thus, a cartographic attacker would need
to initiate the attack by finding a heap-to-data-section pointer
in the heap. When exploiting a web browser, Rogowski et al.
overcame this obstacle by having their malicious web page
allocate a large number of recognizable JavaScript objects on
the heap. Rogowski et al. could find one of these objects by
scanning the heap, and then follow a vtable pointer from that
object to a static data region.

This approach is viable in the case of web browsers, where
the attacker has fine-grained control of the objects that are
allocated on the heap. However, many applications do not
afford an attacker such control. We focus on these applications
in this paper. In particular, we demonstrate how a cartographic
attacker can identify pointers to data sections within non-
deterministic heap data.

A. Threat model

The attacker’s goal is to navigate from a program heap to a
data section without causing a segmentation fault. We assume
the following threat model:

• The attacker can read memory addresses at arbitrary
offsets from a base address, which resides in the heap.

• The attacker can learn the base address, allowing them
to read memory at absolute addresses by specifying an
appropriate offset.

• The attacker can run the victim binary locally.
• If the attacker attempts to access an unmapped memory

address (or other memory that is not user-accessible) a
fault is triggered, and the attack fails.

• ASLR, DEP, stack canaries, and other control flow guards
are enabled.

• The attacker does not have access to the source code of
the victim program.

• The attacker’s local environment is sufficiently similar to
the victim machine that inter-region pointers are located
at the same offsets in libraries on the local machine and
the victim machine.

All but the last assumption are eminently reasonable, since
many target programs have readily available binaries, have
control flow guards enabled, and have historically suffered
from memory vulnerabilities that allowed heap reads. The
last assumption about environmental stability is crucial for
the successful execution of memory cartography attacks, since
inter-region pointers within static data sections must reside
at the exact same offset during the offline and online phases
of the attack [5]. Providing a full analysis of environmental
stability with respect to OS type, CPU model, and so on is
outside the scope of our paper. However, we note that our
assumptions of environmental stability are no stronger than
the stability assumptions made by Rogowski et al. in their
original exposition of memory cartography. It should also be
noted that our threat model makes no assumptions about the
heap allocator being used by the victim program. In particular,
our method works on programs where all heap objects are al-
located in the same VMA, or via mmap-based allocators which
create new VMAs to store dynamically allocated objects.

B. Contributions and Paper Structure

We demonstrate that, under our threat model, an attacker
can reliably identify pointers to specific offsets within specific
data regions of memory, and follow those pointers to launch a
powerful memory cartography attack. In particular, we show
that a simple signature-matching algorithm which learns the
distribution of bytes surrounding pointers to the data section is
sufficient to reliably identify those pointers in heap memory.

Part II gives an overview of relevant prior work on memory
analysis. Part III describes our novel pointer-identification
method. Part IV details the accuracy of this method on real-
world programs, and Part V discusses the implications of our
results.

II. RELATED WORK

To the best of our knowledge, no prior work has attempted
to automatically identify pointers to particular destinations
from dynamically-allocated regions of memory. However, a
substantial body of prior research has focused on identifying
specific types of data structures in memory snapshots.
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Finding in-memory kernel objects (and verifying their in-
tegrity) has been particularly well studied due to the im-
portance of detecting rootkits that tamper with kernel data.
Early approaches like Gibraltar [10] and KOP [11] located
kernel objects by following pointers from statically-allocated
global data structures, inferring the type of each object using
static typing information from the kernel source code. After
locating and typing data structures, these approaches assessed
the integrity of each structure using invariants that were either
hand-crafted or learned from observing objects in a benign
kernel.

Other methods have been developed to discover kernel
objects that cannot be reached from global data structures,
or whose types cannot be robustly inferred from the kernel
source code (as may be the case when a rootkit is attempting
to hide a hijacked data structure). Dolan-Gavitt et al. [12]
learn signatures associated with various kernel data types and
match those signatures with heap memory to discover objects.
To determine such a signature, the authors fuzzed the fields
of the relevant kernel data structure and identified sensitive
fields which caused the kernel to crash when fuzzed. They
then built a signature by recording invariant properties of those
sensitive fields during normal kernel operation. The use of
sensitive fields makes the signature more robust, since any
rootkit that manipulates an object’s data to avoid matching
the signature will likely trigger a system crash. Subsequent
work has attempted to discover even more robust signatures for
kernel objects by analyzing the pointer relationships between
kernel objects of various types, and then scanning memory for
objects which satisfy those relationships [13][14].

Other studies have looked for different kinds of structures
in memory. For example, Graziano et al. [15] used a signature-
matching algorithm to identify Virtual Machine Control Struc-
ture (VMCS) pages in a memory image, allowing them to
locate and analyze the physical address spaces of all VMs
running on the machine. MemPick [16] instruments a binary
to record all buffers allocated by malloc, and analyzes the
evolution of pointer relationships between these buffers to
determine the types of data structures being used by the
program. Laika [17] uses a Bayesian unsupervised learning
algorithm that clusters segments of a memory image into
a number of learned classes, each of which corresponds to
a different data type. This algorithm can recover ground-
truth pointer relationships between data types in real-world
programs. It can also detect malware-infected processes with
impressive accuracy by comparing a process’s data structures
to those of known malware samples.

Our efforts to identify important pointers in heap memory
differ from the aforementioned methods in a number of ways.
The signature-matching algorithms for kernel objects have
impressive accuracy, but they require either source code or
debugging symbols to infer the types of at least some kernel
objects. Methods that do not require external type information,
like MemPick, still require sophisticated binary instrumenta-
tion to detect all memory allocations. This contrasts with our
method, which learns memory signatures from fully unanno-

tated memory snapshots. In this respect, our work is most
similar to Laika. However, when compared with the near-
perfect accuracy of supervised methods for detecting kernel
objects, the fully unsupervised nature of Laika’s learning
process produces lower true positive and true negative rates
when determining object types. Our method achieves much
higher accuracy, which is crucial if an attacker wants to
confidently follow discovered heap pointers without fear of
triggering a segmentation fault. Finally, rather than finding
specific data structures in memory, we investigate the related
problem of identifying pointers to specific destinations, and
examine the repercussions of such identification methods in
an offensive, rather than forensic, setting.

Our threat model is the most similar to that of Morton et al.
[18]. Those authors demonstrated that an attacker capable of
reading data from the heap of a web server could discover a
pointer to an important table of server configuration data; the
attacker could then leverage an arbitrary write vulnerability
to reconfigure and hijack the server. The authors identified
the pointer of interest by matching a signature that was built
through manual analysis of the server’s source code. Our work
can be viewed as an attempt to automate these kinds of attacks,
even when no source information is available.

III. METHODS

We hypothesized that, despite the unpredictability of heap
allocations, pointers to particular destinations would be iden-
tifiable by the data surrounding the pointer variables. We
believed this to be true because two major sources of pointers
from heap regions to data regions are function pointers and
virtual table pointers, both of which are frequently embedded
within objects or structs. Such objects and structs are likely
to surround pointers with recognizable data types and values.
For instance, data structures may contain string constants,
magic numbers, null bytes, or other features that signal the
presence of an adjacent pointer to a specific destination. Such
regularities can be exploited by an attacker to find high-value
pointers on the heap, even in the presence of ASLR and
nondeterministic allocations.

Based on this hypothesis, we developed an algorithm to scan
heap memory and identify pointers to specific data section
offsets. At a high level, the algorithm executes the binary
offline to learn the memory signatures that surround pointers of
interest. Then, in the online phase, the attacker matches bytes
from the heap to precompiled signatures, identifying valuable
pointers. This process is illustrated in Figure 1, and a detailed
description of the algorithm is as follows:

• Step 1: Determine Allocations. The attacker begins
by starting the victim binary, obtaining the PID of the
targeted process, and examining the information in the
pseudo-file /proc/<pid>/maps. This file contains the
ranges of the process’s virtual address space that have
been allocated, as well as names corresponding to those
regions. The attacker stores this information in a list of
tuples of the form
(region_start,region_end,region_name)
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Fig. 1: The algorithm for building a pointer signature. In this example, three potential pointers are identified;
those pointers point to two distinct destinations in libc.so.

One of these tuples corresponds to the target heap (i.e.,
the heap which the attacker can inspect using a read
vulnerability). In some cases (like when the victim pro-
gram uses a mmap-based allocator), the target heap may
be spread over multiple VMAs. In these instances, the
attacker analyzes the contents of all VMAs that comprise
the target heap.

• Step 2: Harvest Pointers. The attacker begins scanning
the target heap and analyzing every pointer-sized region
of memory. Suppose an 8-byte region of memory on a
64-bit machine contains a value val such that

region_start <= val < region_end

for some allocated region of memory. The attacker then
adds the tuple

(region_name, val - region_start)

to a list of observed pointer destinations.
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• Step 3: Frequency Analysis. The attacker repeats the
previous steps several times with independent runs of the
program. After combining the recorded pointer destina-
tions across all runs of the program, the attacker identifies
which destinations are the most frequent. The attacker
will prioritize the fingerprinting of pointers that reference
the most frequent destinations; analyzing such pointers
is likely to generate accurate fingerprints because such
pointers are likely to be true pointers (instead of memory
locations whose contents occasionally happen to repre-
sent addresses in a valid memory range). In a real-world
exploit, the attacker would start by fingerprinting pointers
to the most frequent destination and would move on to
less frequent destinations until they were able to generate
a fingerprint with satisfactory performance. In this paper,
we report the results of fingerprinting the four most
frequent destinations that were observed across every
program run. Note that we record the destination address
as an offset from the base of its enclosing memory region.
This allows us to identify pointers to the same destination
across program runs despite ASLR, provided that the
destination is located in a region with a deterministic
memory layout. In our threat model, the attacker’s goal is
to identify pointers to static data sections, so the relevant
pointer destinations will be located at consistent offsets
as required.

• Step 4: Fingerprinting. After generating a collection of
frequently referenced destinations, the attacker chooses
one of these destinations to target. The attacker then
iterates over a set of heap snapshots from each run of
the program. Whenever they observe a pointer to the
target destination, they record all of the bytes in a fixed-
width window around the pointer. We heuristically chose
a window width of 64 bytes after comparing multiple
window sizes. Finally, the attacker examines all of the
recorded windows and determines the minimum and
maximum value for each byte position in the window.
For example, if the window were 64 bytes long, the
attacker would derive a list of 64 lower bounds and 64
upper bounds. If 64 sequential bytes from memory all fall
within this sequence of bounds, then those 64 bytes may
contain a pointer to the target destination. Note that the
window includes bytes that precede the pointer, bytes that
follow the pointer, and bytes that are part of the pointer
itself. We chose to include the bytes of the pointer in our
analysis because the pointer bytes which are not affected
by ASLR can be informative. For bytes that are part of
the pointer, the derived bounds are very loose for bytes
that are subject to ALSR, and very tight for bytes that
are not.

• Step 5: Filtering. During the online phase, the attacker
exploits a read vulnerability in a victim program. The
attacker reads bytes from the heap, looking for regions
of memory that fall within the sequence of bounds
determined by offline analysis. Once the attacker finds a
match, they can follow the identified pointer to a known

offset inside a known region of memory, and conduct
further memory cartography to reach the ultimate target
region.

IV. EXPERIMENTS

We implemented the algorithm described above
using GDB and Python: GDB dumped memory from
target regions, which was then analyzed in a Python
script. Our open-source implementation is available at
https://github.com/jproney/MemoryCartography. After
performing our offline analyses, we then launched attacks on
several real-world programs. Our tests assumed the presence
of a heap read vulnerability; since the focus of this paper
is leveraging such vulnerabilities, not discovering new ones,
we used GDB to perform the attack-time memory scan. The
assumption that the attacker possesses a read vulnerability is
reasonable, since read vulnerabilities are often used as the
initial step in modern exploits. All tests, unless otherwise
stated, were conducted on 64-bit Ubuntu Linux version 20.04.
Future work should evaluate the effectiveness of our methods
on other platforms; however, we do not expect significantly
different performance, especially because Rogowski et al.
previously demonstrated the efficacy of memory cartography
on Windows and macOS [5].

A. Vim

Vim is an open-source command-line text editor which is
written primarily in C [19]. We chose Vim as our initial test
program because it is single-threaded and has a well-defined
heap region, but is complex enough to have considerable
nondeterminism in its heap allocations; in other words, Vim
exhibits variation in the types, locations, and number of
allocated objects. A program being single-threaded and having
a well-defined heap is by no means necessary for our method
to work, but such a program simplified initial testing since we
could easily determine which thread and VMA to analyze. We
examine more complex examples later in this section.

The results of our experiments on Vim are presented in
Table I. We were able to accurately identify pointers to
data sections by scanning the heap; these pointers referenced
memory regions with high connectivity to the rest of Vim’s
address space, making them ideal starting points for a memory
cartography attack. In Table 1 (as well as subsequent tables),
we report the precision and recall of our method when
identifying pointers to various destinations. It should be noted
that precision is the most important metric we report, since
it approximates the probability that an attacker will find and
follow a legitimate pointer to the intended destination, rather
than following a falsely-discovered pointer and triggering a
memory error.

B. Mozilla Firefox

Mozilla Firefox is an open-source web browser with hun-
dreds of millions of global users. Web browsers are some
of the highest-profile targets for data-oriented exploits like
memory cartography, since browsers store extremely sensitive
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TABLE I: Results on Vim

Rank Region Offset True Positives False Positives Precision Recall
1 vim basic 4 90912 25650 / 25650 0 / 1525680 1.0 1.0
2 libc-2.31.so 5 3040 25451 / 25452 160 / 3077198 .994 .999
12 libc-2.31.so 5 2816 2360 / 2361 1375 / 3100289 .632 .999
14 libc-2.31.so 5 3072 800 / 802 1378 / 3101848 .367 .998

The accuracy of identifying pointers to various destinations in Vim. The “Region” and “Offset” columns indicate the pointer destination. The numbers next
to memory regions differentiate memory allocations with the same name. “Rank” refers to the destination’s frequency rank among all identified destinations.
The frequencies are 1-indexed, with rank 1 being the most frequent destination. In each cross-validation run, 9/10 runs were used to compute a filter, and
the last run was used to assess performance. True positives are regions of memory from the holdout run that match the filter and contain a pointer to the

target destination; false positives match the filter but do not contain the right pointer. The denominators in the “True Positives” and “False Positives”
sections are the total number of aligned pointers to the destination and the total number of aligned pointer-sized regions which do not point to the

destination, respectively. Note that the denominator in the “False Positives” section can vary considerably between destinations, since we only check
addresses that match the alignment of the true pointers from the training data. Results in the table are aggregated across all 10 cross-validation runs. Table I

depicts results for the four most frequent pointers that were identified in every run.

TABLE II: Results on Firefox

Rank Region Offset True Positives False Positives Precision Recall Precision (worst region)
1 libxul.so 2 21438312 310724 / 310735 662 / 6242515 .998 .999 .988
2 libxul.so 2 21438264 299715 / 299716 755 / 6253534 .997 .999 .993
3 libxul.so 1 27080560 23704 / 25603 2369 / 1612697 .909 .926 0.0
4 libxul.so 1 27085200 17300 / 18850 38 / 800250 .998 .918 0.0

The accuracy of identifying pointers to various destinations in Firefox. These are the four most frequent pointers that were identified in every run. The
precision on the worst region represents the lowest performance across any Firefox heap “chunk.” If the pointer in question was not present in one or more

heap chunks, this was treated as a worst-case precision of 0.0.

TABLE III: Results on Firefox: Typed Arrays

Rank Region Offset True Positives False Positives Precision Recall
1 libxul.so 3 58432 22 / 30 0 / 394 1.0 .733
2 libxul.so 3 58752 21 / 30 0 / 394 1.0 .700
3 libxul.so 3 58816 21 / 30 0 / 394 1.0 .700
4 libxul.so 2 248768 22 / 30 0 / 394 1.0 .733

The accuracy of identifying pointers to various destinations in Firefox, using a large jemalloc slab allocated for a typed array. These are the four most
frequent pointers that were identified in every run. As explained in Section IV.B, the discovered pointers were not in the large slab itself, but in the

immediately adjacent allocations.

information like cookies, passwords, and other user data.
Additionally, browsers have hundreds of interacting memory
regions, with JavaScript engines and HTML parsers exposing
large attack surfaces.

1) Overview of Sensitive Data: To motivate our study of
Mozilla Firefox, we manually searched through memory in
Firefox’s JavaScript execution process and looked for sensitive
data that could be disclosed in a memory cartography attack.
We found the following information:

• plaintext descriptions of user devices, such as mouse
driver names;

• plaintext file paths for user configuration files, with
filenames often directly embedding usernames;

• plaintext references to four out of six browser extensions
used by the test browser;

• plaintext descriptions of the operating system theme.
The above data are unavailable to non-malicious JavaScript

code. JavaScript can enumerate media devices but not input de-
vices; JavaScript cannot see the location of the Firefox binary
on disk; JavaScript cannot generally detect extensions unless
the extension creates extension-specific namespace artifacts;
and JavaScript can detect dark-mode but not finer details about
the OS theme.

The above information is sensitive for two reasons. First,
this personal information may enable more thorough finger-
printing of users [20]. Second, determining which extensions
and device drivers a user has installed can allow malicious
websites to target specific vulnerabilities.

Before the implementation of stronger process isolation in
browsers, malicious websites could leverage memory cartogra-
phy attacks to steal cookies and passwords for other websites
[5]. While out-of-process iframes [21] have greatly mitigated
the risk of such attacks, it is still possible that implementation
bugs could leave these sensitive objects exposed in memory.
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2) Locating Heap Memory: Firefox lacks a well-defined,
contiguous heap region. The reason is that Firefox uses a
heavily-modified fork of jemalloc to dynamically allocate
memory. jemalloc partitions memory into “chunks,” which
are further divided into “runs.” In Firefox, chunks are always
1MB in size, and are allocated by jemalloc using calls
to mmap [22], [23]. As a result, the Firefox heap is spread
between a number of chunks that are not necessarily con-
tiguous. In our attacks, we assumed that all 1MB anonymous
allocations within a Firefox renderer process represented heap
chunks; we treated the union of these regions as the effective
program heap. Using the memory-viewing capabilities of Fire-
fox’s built-in developer tools, we confirmed that, except for
very large objects, all allocated JavaScript objects were located
within 1MB anonymous memory regions. Thus, we were
confident that the union of 1MB anonymous regions contained
at least a significant subset of the heap space used by the
JavaScript runtime environment. Recall that our threat model
involves an attacker who lacks source code and debugging
symbols; thus, we did not inspect Firefox’s codebase for
ground truth about what Firefox places in jemalloc chunks.

When the program heap is fragmented over multiple mem-
ory regions, we calculate precision and recall metrics by
aggregating true and false positives over all heap fragments.
In this context, precision represents the probability an attacker
would be successful if all of the heap fragments were visible
via a read vulnerability. We also report the worst precision
across any heap fragment, which indicates the worst-case
success probability if the attacker were restricted to viewing
data from a single fragment. A high worst-case precision
indicates that the attacker can reliably navigate to a specific
data section destination regardless of which heap fragment is
exposed to the read vulnerability.

We tested our ability to identify data-section point-
ers within the Firefox heap after loading the webpage
https://mozilla.com. The results of our experiments
on Firefox are reported in Table II. We identified pointers
to libxul.so with high precision; this library is well
connected to heaps and data sections throughout the address
space.

If JavaScript allocates an object larger than 1MB, Firefox
and jemalloc create a special heap region to host this
object [24]. In addition to assessing the performance of our
pointer-recognition algorithms on standard 1MB heap chunks,
we also tested our ability to locate data-section pointers in
these large heap regions. To do so we created a webpage
that allocates a JavaScript TypedArray object with size
40MB. We then identified the region backing this object in
/proc/<pid>/maps based on its size. We inspected this
region, and we could not find any consistent pointers to
data sections. Note that the absence of consistent pointers is
different from false negatives generated by our fingerprinting
method. In the process of building a fingerprint, we scan
memory dumps from local program executions and look for
destinations in external memory regions that are consistently
referenced across multiple program runs. If no such destina-

tions exist, then successful fingerprinting is impossible, since
there are no useful pointers to be detected. While there were
no usable pointers in the large heap region, we could suc-
cessfully identify pointers to data sections if we assumed the
attacker could scan immediately adjacent memory regions (i.e.,
regions which were contiguous with the large heap region,
but which were allocated by a different call to mmap and
listed separately in /proc/<pid>/maps). The results of
our pointer-identification efforts on large heap segments (and
adjacent regions) are presented in Table III. As in the smaller
Firefox heap regions, we uncovered pointers to libxul.so
with high precision.

C. Apache and WordPress

Next, we evaluated the efficacy of our methods on server-
side programs; to the best of our knowledge, no prior work
has examined the susceptibility of server-side programs to
memory cartography attacks. We began by examining the
Apache web server, which is among the most popular web
server frameworks [25].

To simulate a realistic web server, we installed a standard
LAMP (Linux, Apache, MySQL, PHP) stack and configured
Apache to serve a small WordPress site over HTTPS. To
simplify the process of mapping the server’s memory layout,
we configured Apache to spawn a single worker process with
multiple threads to handle all connections. This is a realistic
configuration for high-traffic servers that aim to limit the
number of processes forked. To further increase the realism of
our attack, we ran Apache with Ubuntu 12.04 and OpenSSL
1.0.1, which is vulnerable to the infamous HeartBleed bug.
HeartBleed is a classic buffer overread, disclosing the memory
surrounding a vulnerable buffer. Our simulated attacker used
the heap area containing the vulnerable buffer as the starting
region for the cartography attack.

We collected pointers from this region after launching
Apache and simulating various kinds of requests to the server,
including user commenting, the creation and deletion of posts,
and admin logins and logouts. The results of our experiments
on Apache are reported in Table IV. As in our previous
experiments, we identified useful pointers with very high
accuracy.

D. Redis

Redis is a popular in-memory database that can function
as a message broker or cache. Because Redis is primarily in-
memory and lives within a single process, memory cartogra-
phy can reveal data belonging to arbitrary users. We chose to
analyze memory regions containing key-value pairs, since a
bug in Redis’s data retrieval code could unintentionally leak
bytes from these regions during database queries.

By default, Redis uses jemalloc for memory allocation.
(Refer to Section IV.B for further discussion of this allocator).
After executing a workload of multiple set-adds to a single
set, we empirically observed that all key-value pairs were
located in 8MB anonymous memory regions, and that all 8MB
anonymous regions contained key-value pairs. We therefore
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TABLE IV: Results on Apache

Rank Region Offset True Positives False Positives Precision Recall
1 libphp5.so 1 252140 48542 / 51565 84 / 3655165 .998 .941
2 libphp5.so 0 3119280 45109 / 45109 11 / 3661621 .999 1.0
3 libphp5.so 0 3100304 26020 / 26020 0 / 3680710 1.0 1.0
4 libphp5.so 0 3213931 21850 / 21850 0 / 3684880 1.0 1.0

The accuracy of identifying pointers to various destinations in Apache. These are the four most frequent pointers that were identified in every run. Pointers
were extracted from the heap which leaked data through the HeartBleed vulnerability.

TABLE V: Results on Redis

Rank Region Offset True Positives False Positives Precision Recall Precision (worst region)
1 redis-check-rdb 3 352 330 / 330 30 / 10485430 0.917 1.0 0.0
5 locale-archive 0 109100 50 / 50 0 / 41942990 1.0 1.0 0.0
8 liblua5.1.so.0.0.0 1 4064 40 / 40 4 / 41943000 0.910 1.0 0.0
9 libc-2.31.so 1 1036947 30 / 30 0 / 20971490 1.0 1.0 0.0

The accuracy of identifying pointers to various destinations in Redis. Pointers to anonymous regions are not included in rank indexing. These are the four
most frequent pointers that were identified in every run.

decided to treat the union of all 8MB anonymous regions as
the effective set of vulnerable heap memory.

We then attempted to identify pointers in these regions. The
results of these experiments are reported in Table V. We found
that, during every execution, a single 8MB region contained
reliably identifiable pointers, while the other regions contained
no consistent pointers. We hypothesize that the region with
identifiable pointers functions as the root of a linked list of
memory regions, and that each region in the list contains a
subset of the database’s key-value pairs.

V. DISCUSSION

In all test cases, we found pointers that could be identified
with over 99% precision. For Vim, Apache, and Redis, at least
one pointer could be identified in new runs of the program with
perfect precision. In Firefox, the most predictable pointers had
high enough precision (>99% on the worst heap region) that
an attacker would be overwhelmingly likely to identify a true
pointer when performing an online scan of the heap. Only
the two most frequent pointer destinations were identified in
all of Firefox’s 1MB heap chunks; this is not very surprising,
since different parts of the heap may contain different types
of data with pointers to different regions of memory. It should
also be noted that we observed considerable nondeterminism
in the number of pointers present inside heaps between runs
(Figure 2), suggesting that our learned filters are robust to the
inherent uncertainty of heap allocation.

Our results indicate that it is possible to reliably navigate
to a data section from unstructured heap data. A logical
next question is whether navigation to these data sections is
sufficient to launch a powerful memory cartography attack. To
answer this question, we built memory graphs for all of our
test applications as described by Rogowski et al. [5]. In the
memory graph, each vertex is an allocated memory region,

and directed edges between regions represent pointers that
consistently link a fixed offset in the source region with a
fixed offset in the destination region. We identified strongly
connected components (SCCs) within these graphs. Any node
in an SCC is reachable from any other node.

• In Vim, we found that our ability to navigate to the
vim_basic and libc-2.31.so data sections was
sufficient to access nearly all mapped regions in the
program’s address space. More specifically, vim_basic
and libc-2.31.so were part of the largest SCC,
which contained a large subset of allocated regions and
had outgoing edges to virtually all other SCCs.

• In Firefox, we were able to reliably reach libxul.so
from the heap. libxul.so is a critical library for the
Gecko browser engine, and it resides within the largest
SCC of the memory graph.

• We discovered pointers to regions of similarly high
connectivity in Apache and Redis, suggesting that our
methods enable navigation to regions that are ideal for
launching memory cartography attacks.

The ability to identify specific pointers on the heap may
be useful for other types of attacks. For instance, if an
attacker wanted to leak the address of a library like libc, we
hypothesize that the attacker could learn to identify pointers
to a specific function in the library. By locating such a pointer
in the heap, and then reading the pointer’s value, the attacker
could subtract the constant offset of this function to leak the
base address of libc, potentially enabling a variety of attacks
(like return-oriented programming) that subvert the control
flow of the program [3].

To mitigate the threat posed by memory cartography attacks,
software must ensure that no potentially sensitive information
is stored in the same process as a potentially compromised
execution flow. Sensitive data should instead be stored in
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Fig. 2: Example of heap nondeterminism. Each “Mem-
ory Region” is a different 1MB anonymous region in the
memory of Firefox. We ran Firefox 10 times and scanned
each of these five 1MB regions, recording the number
of pointers to libxul.so_2, offset 21438312 (this was
the most frequently-referenced destination across all Firefox
heaps). Each column contains data for a specific region,
and displays the distribution of the number of pointers to
libxul.so_2+21438312 across all 10 runs.

another process, and then fetched by the unsafe process via
IPC. This approach is already used by Chrome’s site isolation
architecture [21]. More sophisticated ASLR that randomizes
more than just the offsets of memory regions might also
decrease the precision of traversing process memory; however,
some evidence suggests that fine-grained ASLR is less useful
than one might expect [26].

VI. LIMITATIONS AND FUTURE WORK

Our initial results are promising, but there are limitations
to our current approach. For example, in some situations,
our attack may be infeasible because the attacker does not
have enough time to scan sufficient memory to find pointers;
this might happen if the memory read vulnerability involves
sending packets over a network. Additional research is also
necessary to determine the extent to which the offline analysis
phase must exactly predict the execution environment of the
target program. For example, what if the offline analysis uses
the same version of Chrome as the eventual victim, but uses
Ubuntu 18.04 instead of 20.04? Our current experiments as-
sume a perfect match, but the likelihood of attack success will
presumably decrease as the victim environment looks “more
different” than the test environment. As mentioned earlier,
such changes could pose a challenge because the offsets of
inter-region pointers within libraries may change between
versions; if this happens, the attacker may try to follow a
pointer at a known offset, only to trigger a memory error.
Test-time versus attack-time environmental divergences are a
classic challenge for attacks that exploit low-level execution
characteristics.

Regardless, it is somewhat surprising that such a simple al-
gorithm can identify specific pointers with such high accuracy.
It would be interesting to explore the effectiveness of more
complex learning algorithms like decision trees and SVMs.
However, these algorithms may be susceptible to overfitting
the training data, especially because we train on relatively few
independent program runs.

In future work, we hope to profile the types of data that
are referenced by high-frequency pointers on the heap. For
example, it would be interesting to verify our hypothesis
that pointers to virtual tables and library functions constitute
a large portion of data-section pointers in heap regions. A
systematic analysis of frequent pointer destinations may also
provide insight into which types of memory regions are readily
accessible from pointers in the heap.

VII. CONCLUSIONS

In this paper, we demonstrated the feasibility of using
extremely simple filters to identify data-section pointers in
nondeterministic heap data. Our techniques work in the pres-
ence of defenses like ASLR and enable attackers to transform
a heap read vulnerability into a powerful memory cartography
attack. The original cartography attack of Rogowski et al.
required attackers to use techniques like heap spraying to
understand the memory layout around a vulnerable object. In
contrast, our work replaces this application-specific procedure
with an application-agnostic algorithm for identifying data-
section pointers in heap memory. These findings expand the
number of programs that are vulnerable to memory cartogra-
phy attacks, underscoring the need for different address spaces
to hold content from mutually-distrusting origins.
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